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We enumerate possible topologies of pseudoknots in single-stranded RNA molecules. We use a steepest-
descent approximation in the large N matrix field theory, and a Feynman diagram formalism to describe the
resulting pseudoknot structure.
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An RNA molecule is a heteropolymer strand made up of
four types of nucleotides, uracil �U�, adenine �A�, guanine
�G�, and cytosine �C�. The sequence of these nucleotides, or
bases, makes up the molecule’s primary structure. Bases
form hydrogen bonds with each other to give the molecule a
stable shape in three dimensions, with U bonding to A, and C
to G. Calculating the shape a given primary structure will
fold into is important in molecular biology.

We can associate −Uij with the energy of forming a hy-
drogen bond between the ith and jth bases, and let Vij
=exp�Uij /T� where T is the temperature. This is a minimalist
model: we make no attempt to account for loop penalties or
stacking interactions. There is some rigidity in the chain of
nucleotides, as well as steric constraints, which prevent hy-
drogen bonding between nucleotides that are within four
bases of each other, so we let Vi,i+k=0 if k�4. The partition
function associated with this bonding is given by

ZL,1 = 1 + �
i�j

Vij + �
i�j�k�l

VijVkl + �
i�j�k�l

VikVjl

+ �
i1�i2�¯�in

Vi1i2
Vi3i4

¯ Vinin+1
+ ¯ . �1�

Evidently, ZL,1 is the combinatorial heart of the RNA folding
problem �1�. While ZL,1 appears very simple at first glance, it
contains a term for every possible configuration of bonds on
the chain. Finding the folded state could involve searching
through �L! terms, which is a daunting task for even the
shortest RNAs.

Fortunately, in RNA, there is a hierarchical separation be-
tween primary, secondary, and tertiary structures that reduces
the number of configurations that must be considered. One
can find the secondary structure by drawing the chain of
nucleotides around the circumference of a circle, with the
first nucleotide next to the last, and finding a bond structure
that minimizes the free energy with the constraints that all
bonds are drawn as arcs within the circle, and no bonds
cross. Another representation is to draw the bond structures
as systems of parallel arches which do not cross. This planar
configuration �in the sense used in Refs. �2,3�, though other
usages are common in the RNA folding literature� is made
up of the secondary structure’s characteristic loops and
bulges. Bonds between distinct parts of the secondary struc-
ture are called pseudoknots, and are typically considered part
of the molecule’s tertiary structure. For instance, the contri-

butions from the third sum in �1� come from pseudoknot
configurations. The formation of the tertiary structure is be-
lieved not to alter the more stable secondary structure �4,5�.

Secondary and tertiary structures are usually stable at bio-
logical temperatures, which are typically well below the
RNA molecule’s melting point. This makes certain very ef-
ficient algorithms for determining RNA secondary structure
at zero temperature possible and useful. These “dynamic pro-
gramming” methods involve recursively calculating ZL,1 and
then backtracking to find the dominant terms, and thus de-
termine which bonds are present in the folded RNA. There
are also dynamic programming techniques that try to account
for pseudoknots, but they are necessarily slower �2,6,7�.

The distinction between secondary and pseudoknot struc-
ture has a topological flavor. One powerful tool for dealing
with topological considerations is the large N expansion used
in matrix field theories. Originally proposed by ’t Hooft to
represent quantum chromodynamics with N colors, it pre-
dicts that nonplanar Feynman diagrams have amplitudes pro-
portional to negative powers of N, and are thus suppressed
when N is large �3,8�. Two of the authors applied a similar
technique to the problem of RNA folding, leading to the
same sort of suppression of nonplanar configurations; we
summarize the results below, and refer the reader to Ref. �1�
for details.

One can perform a series of manipulations to find that a
chain of L bases has

ZL,1 =
1

C
� dA e−�N/2��tr A2+2 tr ln M�A��M−1�A�L+1,1, �2�

where the integral is taken over all Hermitian �L+1�� �L
+1� matrices A. C is an unimportant normalization constant
and M is a matrix function of A given by

Mij = �ij − �i,j+1 + i�Vi−1,jAi−1,j . �3�

Here, N is used to keep track of topology. as mentioned
above. Thus we can expand in powers of 1 /N and evaluate
the integral by steepest descent. We need to find the station-
ary point of the “action”

S�A� 	
1

2
tr A2 − tr ln M�A� �4�

which requires solving �S�A� /�A=0. This occurs at the point

Ã, which is defined by
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Ãlk = i�Vlk�M−1�l,k+1. �5�

We define a new matrix in terms of M−1 at the stationary
point

Gij = �M−1�i+1,j �6�

and use the trivial identity � jMij�M−1� jk=�ik to derive the
Hartree equation

Gi+1,k = �i+2,k + Gik + �
j

Vi+1,jGi,j+1Gj−1,k. �7�

This equation is recursive, and we need to impose the bound-
ary condition that Gi,i+l=0 for l�2 to solve it. Then, Gij is
the partition function of the helical secondary structure of a
chain that starts with the jth base and ends with the ith base.
This form is precisely that used in existing dynamic pro-
gramming algorithms �2,4,6�. Since it carries two indices, Gij
is analogous to the quark propagator in large N QCD, which
carries two indices for color. The recursion relation ensures
that it is a “dressed” propagator.

We can then introduce the fluctuation xij, defined by Aij

= Ãij +xij /�N, and expand tr log�M−1�A�� and M−1�A� as
power series in x. Then we collect powers of N−1/2 to find
corrections to the steepest descent approximation of ZL,1. We
are left with Gaussian integrals in xij that can be evaluated by
applying Wick’s theorem, with contractions given by the in-
verse of the quadratic form in the exponential. This inverse is
a propagator which satisfies the Bethe-Salpeter equation

�kl,mn = �km�nl + �
ij

Vkl
1/2Vij

1/2Gk−1,i+1Gj−1,l+1�ij,mn. �8�

While the Hartree equation gave the partition function for a
single contiguous chain of RNA interacting with itself, the
Bethe-Salpeter relation gives the contribution from two sepa-
rated segments.

Physically, � represents the resummation of all ladder
diagrams between anti-parallel segments, where each seg-
ment is itself dressed by secondary structure elements. Equa-
tion �8� can be represented pictorially, as in Fig. 1�a�. There
are four indices on �ij,kl, indicating where the segments be-
gin and end, so we call it a “gluon propagator,” in analogy to
gluon propagators in QCD, which carry four color indices. A
typical structure contributing to � is shown in Fig. 1�b�.
Each single line propagator is dressed by any system of
arches. There can be any number of parallel interactions be-
tween the two strands. The only constraint is that no interac-
tion lines should cross. Note that a system of arches along
one line �RNA strand� typically represents a piece of helix on

this strand, whereas a system of parallel interactions between
the two lines can represent a helical fragment between the
two strands.

There are two ways of drawing Feynman diagrams for
these propagators. The first was introduced in Ref. �1�, and is
useful for visualizing the RNA’s topology. The second is the
double-line formalism of ’t Hooft, which makes it very easy
to find a graph’s order in 1/N, by assigning appropriate
powers of N to loops, edges, and vertices �3,8�. It follows
from Eq. �8� that the � propagator contains powers of Vij

1/2,
but the partition function �1� contains only whole powers of
Vij. Thus, all �’s in the expansion appear with factors of Vij

1/2,
as Vij

1/2�ij,klVkl
1/2. This is reflected in the diagrams in Fig. 2.

We can then expand ZL,1 to order N−2, getting the secondary
structure as well as the tertiary correction to it. Then

ZL,1 = GL,1 �9�

+
1

N2
��B4 −
1

4
B2T4 −

1

3
B3T3 −

1

5
B1T5 +

1

12
B1T3T4

+
1

18
B2T3

2 −
1

162
B1T3

3M−1�
L+1,1

� , �10�

where we use the value of M−1 at the stationary point from
Eqs. �5� and �6�. We have also introduced some convenient
shorthand for matrices and traces that contain powers of x,

cij = �Vi−1,jxi−1,j ,

Dmn = �
m�

�M−1�mm�cm�n,

�Bp�kl = �Dp�kl,

Tp = tr Bp.

The angle brackets in Eq. �10� mean the included terms
should be integrated over xij with the Gaussian weight
exp�−�tr x2+tr�M−1c�2� /2�. These integrals are simple in
principle, as the xij’s can be contracted with the Bethe-
Salpeter propagator �8�. Each power of x introduces a vertex
for gluon lines.

The multiplication implicit in the definition of Bp is ma-
trix multiplication, so many indices must be summed over

FIG. 1. The � propagator.

FIG. 2. Propagators.
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when evaluating the terms in Eq. �10�. For instance, evalu-
ating one of the contractions of �B4M−1� produces the sum

��B4M−1�L+1,1� = �
i,j,k,l,

m,n,o,p

GL,i+1Gj,k+1 � Gl,m+1Gn,o+1Gp,1

� Vi,n+1
1/2 �i,n+1,j+1,mVj+1,m

1/2

� Vk,p+1
1/2 �k,p+1,l+1,oVl+1,0

1/2 . �11�

Looking at the diagram associated in the contraction in Fig.
3, and using the condition that Ga,a+b=0 for b�2, we deduce
the proper constraint for the indices, L� i� j�k� l�m
�n�o� p�0.

The Bm and Tn terms have simple ’t Hooft diagrams, as
shown in Fig. 4. The ellipses in the diagram represent the
string of m or n gluon vertices associated with those terms.
The graph for Tn closes on itself, reflecting the trace’s cyclic
symmetry.

These diagrams make it simple to pick out the Wick con-
tractions that actually contribute to ZL,1. One can draw Feyn-
man diagrams for the contractions of the seven terms in Eq.
�10�, and find that 25 of them are distinct �many contractions
are equivalent under the cyclic symmetry of the traces Tn�.
However, most of these vanish, as they contain closed G
loops. Diagrams involving closed loops will depend on a
factor of Gi,i+l for l�2, and therefore vanish. This can also
be understood in terms of the diagrams from Ref. �1�, where
G’s represent segments of RNA, and �’s represent interac-
tions between two segments. A closed G loop with both ends
connected to the same side of a � propagator describes a
closed loop of RNA interacting with the main strand. We
have specifically excluded this possibility from our definition
of ZL,1, so such configurations must vanish. This is the rea-
son why there is no graph of order 1 /N in Eq. �9�.

As an example, consider �B3T3M−1�, which can be con-
tracted in the three distinct ways shown in Figs. 5�a�, 5�b�,
and 5�c�. Each of these occurs with a symmetry factor of 3,
since an xij from the B3 can be contracted with any of the
�cyclically equivalent� xml’s in T3. Only the diagram in Fig.
5�a� can be traced with an unbroken line—the other diagrams
contain closed loops. Thus, only one of the three sorts of
contractions contributes to the partition function.

When all the contractions have been carried out, there
remain eight nonvanishing graphs, which are shown in Fig.
6. The contractions associated with each diagram are shown
in Table I. The alphabetic notation, common in the biochemi-
cal literature, shows the order in which sites pair with each
other. For example, “ABAB” indicates that the first and third
vertices �both denoted by “A”� are paired, and that the vertex
between them is linked to the fourth vertex �both denoted by
“B”�.

Since the pseudoknots we consider contribute to order
1 /N2, only one pseudoknot may be present at a time. This
problem can be solved by noting that all the pseudoknot
diagrams are one particle irreducible �1PI� �i.e., they cannot
be disconnected by opening a single quark line�, and can thus
be re-summed by a Dyson equation. Define �mn as the sum
of all the amputated pseudoknot diagrams defined above
�i.e., the sum of all O�N−2� 1PI diagrams with their external
G propagators removed�. Then the partition function Zmn sat-
isfies the usual Dyson equation

Zmn = Gmn + �
m�k�l�n

Zmk�klGln. �12�

Once the eight diagrams for � have been calculated, the full
partition function �with any number of pseudoknots� can be
calculated using the above recursion relations. Present knot-
prediction algorithms use dynamic programming allow knots
which have bonds drawn inside and outside of the disc, as

TABLE I. Contractions associated with the diagrams.

Figure Contraction Pseudoknot

�a� B4M−1 ABAB

�b� B2T4M−1 ABACBC

�c� B3T3M−1 ABCABC

�d� B1T5M−1 ABCBCA

�e� B1T3T4M−1 ABCBDCDA

�f� B1T3T4M−1 ABCDBCDA

�g� B2T3
2M−1 ABCADBCD

�h� B1T3
3M−1 ABCDBECDEA

FIG. 3. Diagram for ��B4M−1�L+1,1�.

FIG. 4. Matrix products

FIG. 5. Contractions for �B3T3M−1�
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long as they are no crossings �7�. This excludes certain to-
pologies our algorithm provides for, such as ABCABC
pseudoknots. On the other hand, these algorithms do provide
for some topologies that we have excluded as O�N−4�.

The method presented allows us to calculate the partition
function in O�L6� time, so it can be used for folding, by
backtracking to pick out the largest term in the partition
function. The strategy for doing so is the following: �i� solve
for the Hartree partition function �7�, �ii� solve the Bethe-

Salpeter recursion equation �8� to get �kl,mn, �iii� calculate
the eight amputated diagrams of Fig. 5 making up the 1PI
function �mn, �iv� solve the Dyson equation �12� by recur-
sion to obtain the full partition function with any number of
pseudoknots, �v� and then backtrack to find the largest term
in this partition function. Some numerical calculations are
under way and we hope to present those results in a future
paper, along with an explicit calculation for the order N−2

folding of a short �L�10� RNA �9–15�.
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FIG. 6. Nonvanishing
contractions.
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